Formation of homoallyl alcohols and 4-chlorotetrahydropyrans from allyl-stannanes, aldehydes and $\mathbf{T i C l}_{4}$ or $\mathbf{C p}_{2} \mathbf{T i C l} \mathbf{2}_{2}$

Daniele Marton, Giuseppe Tagliavini *, Michele Zordan
Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Università di Padova, via Marzolo I, 1-35131 Padova (Italy)
and James L. Wardell
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE (U.K.)
(Received February 8th, 1990)

Abstract

Reactions between $\mathrm{Bu}_{3} \mathrm{SnCHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}\left(\mathbf{1} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}\right.$ or $\mathrm{Me} ; \mathrm{R}^{1}, \mathrm{R}^{2}=$ $\left(\mathrm{CH}_{2}\right)_{3}$) and EtCHO in the presence of $\mathrm{TiCl}{ }_{4}$ or $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ are reported. The compound, $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$, has been found to be an effective Lewis acid catalyst for the allylation of EtCHO using $1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right)$ and $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{Et}_{2} \mathrm{O}$ solutions at $-78^{\circ} \mathrm{C}$; the products after hydrolysis are homoallyl alcohols with stereo- and regio-selectivities different from those found for $\mathbf{T i C l}_{4}^{-}$reactions. Reactions with an excess of EtCHO in the presence of TiCl_{4} give $4-\mathrm{Cl}-3-\mathrm{R}^{1}-5-\mathrm{R}^{2}-$ 2,6-2Et-tetrahydropyrans (2) via insertions of a second EtCHO into the metal-O bond of the initially produced homoallyl alcoholate: the trans-2 compounds are obtained from threo- $\mathrm{EtCH}\left(\mathrm{OM}^{\prime}\right) \mathrm{CHR}^{2} \mathrm{CH}=\mathrm{CHR}^{1}$ and cis-2 from erythro$\mathrm{EtCH}\left(\mathrm{OM}^{\prime}\right) \mathrm{CHR}^{2} \mathrm{CH}=\mathrm{CHR}^{1}$ (e.g., $\mathrm{M}^{\prime}=\mathrm{TiCl}_{3}$).

Introduction

Homoallyl alcohols can be conveniently prepared by allylation of aldehydes with allylstannanes in the presence of a Lewis acid [1-12]. A second molecule of RCHO can also be incorporated [13-17], via insertion into the $\mathrm{M}^{\prime}-\mathrm{O}$ bond of the homoallyl alcoholates 3 and 4, to give 4-halo- or 4-hydroxy-tetrahydropyrans (2), previously obtained from the reactions in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, tin halides, or BCl_{3} [18] (see Scheme 1).

The formation of homoallyl alcohols has been especially well studied, with much attention paid to the factors controlling the stereo- and regio-selectivities. The synthesis of the tetrahydropyrans has been less studied. We present here some observations on the synthesis of 4-chlorotetrahydropyran derivatives ($\mathbf{(2 ; ~ Y = C l) ~}$

Scheme 1
with TiCl_{4} as the added Lewis acid. In addition, a comparison has been made of the effects of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and TiCl_{4} as the added Lewis acid in the formation of homoallyl alcohols from crotyl- and cyclohex-2-enyl-stannanes.

Results and discussion

While allylation of RCHO can be brought about by use of an allylstannane 1 alone, on heating or under pressure [19], the presence of a Lewis acid, $\mathbf{M X}_{\mathrm{N}}$, e.g., $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{TiCl}_{4}$ or $\mathrm{R}_{n}^{3} \mathrm{SnCl}_{4-n}(n=0-2)$, allows much milder conditions, e.g., temperatures of $-78^{\circ} \mathrm{C}$, to be employed. Furthermore, the presence of the added Lewis acid can give rise to significantly different selectivities among the homoallyl alcohol products. The added MX_{N} has been considered to activate the aldehyde, via complexation [7-9], and/or to take part in exchange reactions with 1 to generate new and more active allylating species, $\left[\mathrm{R}^{1} \mathrm{CH}=\mathrm{CHCHR}^{2}\right] \mathrm{MX}_{\mathrm{N}-1}$. The stereoselectivities of products 3 and 4 (Scheme 1) can depend on the particular allylating agent as well as the structure of the complexed aldehyde. The involvement of a pre-transmetallation step being increasing accepted, especially for the TiCl_{4} [20] and $\mathrm{R}_{n}^{3} \mathrm{SnCl}_{4}{ }_{n}$ reactions [10,16,21] (as well as those with BCl_{3} [18]). No evidence has yet been found for the occurrence of transmetallations between $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and 1 in solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$.

Irrespective of the order of mixing of the reagents, mixtures of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, RCHO and either (Z)- or (E)-crotylstannanes give $\mathrm{CH}_{2}=\mathbf{C H C H M e C H R O H}$ (5) with an erythro-stereo-selectivity [24]. In contrast TiCl_{4}-promoted reactions have stereo-selectivities markedly dependent on the order of mixing: normal addition (crotylstannane added to TiCl_{4} and RCHO at $-78^{\circ} \mathrm{C}$) gives 5 with a high erythro-selectivity (the active allylating agent is considered to be the allylstannane), whereas inverse addition (RCHO added to pre-equilibrated TiCl_{4}-crotylstannane mixture) gives 5 with a high threo-selectivity (a crotyl-titanium species is probably
the active species) [20]. Use of related titanium compounds is known from other studies to lead to products with high threo-selectivities [25].

Three allylstannanes 1 were used in this study with TiCl_{4} or $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ namely (1 , $\left.\mathbf{R}^{1}=\mathbf{R}^{2}=\mathrm{H}\right),\left(1, \mathrm{R}^{1}=\mathrm{H}, \mathbf{R}^{2}=\mathrm{Me}\right)(E / Z=40 / 60)$ and $\left(1, \mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$. Details of results for the formation of homoallyl alcohols from ($\mathbf{1}, \mathbf{R}^{\mathbf{1}}, H, \mathbf{R}^{\mathbf{2}}=\mathrm{Me}$) and (1, $\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}$) are given in Table 1 for reactions invoiving TiCl_{4} or $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and some other selected Lewis acids.

The halide $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ is as an effective Lewis acid in these reactions. There are however clear differences (compare entries 1-3) between the results for $\mathbf{C p}_{2} \mathbf{T i C l}_{2}$ (using the so-called normal addition) and for TiCl_{4} (using either the normal or inverse addition) [20] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, initially at $-78^{\circ} \mathrm{C}$, in terms not only of the erythro /threo selectivities observed for $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHMeCH}=\mathrm{CH}_{2}$ (6) but also of the high yield (42\%) of $(Z)-\mathrm{EtCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHMe}$ (7) * obtained from the $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ reaction. The formation of 7 suggests the involvement of $\mathrm{CH}_{2}=\mathrm{CHCHMe}$-metal allylating agents as well of $\mathrm{MeCH}=\mathrm{CHCH}_{2}$-metal species (for formation of 6). High yields of 7 were obtained from reactions involving the addition of $1\left(\mathbf{R}^{1}=H, R^{2}=M e\right)$ and EtCHO to $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$, in which $\mathrm{Bu}_{2} \mathrm{ClSnCHMeCH}=\mathrm{CH}_{2}$ is the actual allylating species [10]. The erythro/threo ratio for 6 obtained in the $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\left(1, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} ; E / Z=40 / 60\right)$ reaction (entry 3) is similar to that for reaction in $\mathrm{Et}_{2} \mathrm{O}$ at $-35^{\circ} \mathrm{C}$ using $\mathrm{Cp}_{2} \mathrm{TiCl}$ (crotyl) (8), pre-formed [26] from (E)-MeCH $=\mathrm{CHCH}_{2} \mathrm{MgBr}$ and $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ (entry 5). It appears that stereoselectivities in reactions of 8 in $\mathrm{Et}_{2} \mathrm{O}$ solution are somewhat temperaturedependent $[26,27]$ (entries 4 and 5).

As shown by entries 10 and 11 in Table $1, \mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ is mildy in the reaction of tributylcyclohex-2-enyltin (1, $\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}$) with EtCHO in both $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ solutions. As well as the homo allyl alcohol, $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}$ (9, $\mathbf{R}^{1}, \mathbf{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}$), produced in modest yields (28 and 39%), products of decomposition of $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ viz. cyclohexenone and cyclohexenol, were also isolated. Similar erythro / threo ratios (ca. 60/40) for 9 were observed in both reactions. This ratio was also observed when $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ was used at $25^{\circ} \mathrm{C}$ in the absence of solvent (entry 12) and also in one of the two TiCl_{4} reactions involving $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ (entry 8). A similar erythro / threo ratio (for $\mathrm{MeCH}(\mathrm{OH}) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}$) was also observed in the $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$, MeCHO and $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ reaction. Only the $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ reaction [18] (entry 14) showed a higher erythro-selectivity.

Compound $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ can exist only as a (Z)-alkene, and no apparent allyl migration or isomerization occurs in exchange reactions with $\mathbf{M X}_{\mathrm{N}}$. The involvement of the Lewis acid thus can only provide a new allyl-metal species, $\mathrm{X}_{\mathrm{N}-1} \mathrm{MCHCH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3}$ and/or a complexed aldehyde.

The $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ reactions (with MeCHO or EtCHO) and $1\left(\mathbf{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ give the same erythro/threo ratio for the homo-allyl alcohols even when different sequences of adding reagents were utilized. Use of these different sequences gave rise to quite distinct erythro / threo ratios when crotylSnBu ${ }_{3}$ was used.

The different stereoselectivities obtained in the two $\mathrm{TiCl}_{4}, \mathrm{EtCHO}$ and $1\left(\mathrm{R}^{1}\right.$, $\mathbf{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}$) reactions (entries 8 and 9) indicate the importance of the reaction

[^0]Table 1
Products of reactions between equimolar amounts of $\mathrm{RCHO}(\mathrm{A}), \mathrm{Bu}_{3} \mathrm{SnCHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}$ (1; Sn) and Lewis acid (LA)

Entry No.	$\begin{aligned} & (1) \\ & (\mathrm{Sn}) \end{aligned}$	Lewis Acid (LA)	RCHO (A)	Addition sequence reaction conditions	Products ${ }^{\text {a }}$ (Yieldis \%)	Ref.
1	$(Z)-1,\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right)$	TiCl_{4}	cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHO}$	$\begin{aligned} & (\mathrm{Sn}) \text { to }(\mathrm{LA})+(\mathrm{A}) \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHOHCHMeCH}=\mathrm{CH}_{2}(97) \\ & \text { erythro } / \text { threo }=97 / 7 \\ & + \text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHOHCH}_{2} \mathrm{CH}=\mathrm{CHMe} \\ & \mathrm{Z} / E=81 / 19 \end{aligned}$	20
2		TiCl_{4}	cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHO}$	(A) to premixed $(\mathrm{LA})+(\mathrm{Sn})$	cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHOHCHMeCH}=\mathrm{CH}_{2}$ (95) erythro $/$ threo $=5 / 95$	20
3	$\begin{aligned} & 1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right) \\ & (E):(Z)=40: 60 \end{aligned}$	$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}{ }^{\text {c }}$	EtCHO	$\begin{aligned} & (\mathrm{Sn}) \text { to (LA) }+(\mathrm{A}) \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$+(E)-\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHOHCH}_{2} \mathrm{CH}=\mathrm{CHME} \text { (5) }$ $\mathrm{EtCHOHCHMeCH}=\mathrm{CH}_{2}$ (58) erythro $/$ threo $=40,60$	b
4	$\mathrm{CP}_{2} \mathrm{TiCl}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathbf{C H M e}\right)^{\text {d }}$		PhCHO	$\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$	$+(\mathrm{Z})-\mathrm{EtCHOHCH}_{2} \mathrm{CH}=\mathrm{CHMe} \text { (42) }$ $\mathrm{PhCHOHCHMeCH}=\mathrm{CH}_{2}$ erythro $/$ threa $=20 / 80$	27
5	$\mathrm{CP}_{2} \mathrm{TiCl}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHMe}\right)$		RCHO	$\mathrm{Et}_{2} \mathrm{O},-35^{\circ} \mathrm{C}$	$\mathrm{RCHOHCHMeCH}=\mathrm{CH}_{2}$ $\mathrm{R}=\mathrm{Ph}$; erythro $/$ threo $=40 / 60$ $\mathrm{R}=\mathrm{Et}$, erythro $/$ threo $=36 / 64$	26
6	$\begin{aligned} & 1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right) \\ & (E):(Z)=33: 66 \end{aligned}$	$\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$	EtCHO	$\begin{aligned} & (\mathrm{Sn})+(\mathrm{A}) \text { to }(\mathrm{LA}) \\ & \text { Neat, } 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{EtCHOHCHMeCH}=\mathrm{CH}_{2}(4-13) \\ & \text { erythro } \geqslant \text { threo } \\ & +(Z)-\mathrm{EtCHOHCH}_{2} \mathrm{CH}=\mathrm{CHMe}(87-96) \end{aligned}$	28
7		$\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$	EtCHO	(A) to equilibrated (Sn) + (LA) Neat. $25^{\circ} \mathrm{C}$	$\mathrm{EtCHOHCHMECH}=\mathrm{CH}_{2}(80)$ erythro $/$ threo $=38 / 62$	10

$8 \quad 1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$
a
EtCHO^{e}
$\mathrm{EtCHO}{ }^{\circ}$
$\mathrm{EtCHO}{ }^{c}$
MeCHO
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}{ }^{h} \quad \mathrm{EtCHO}^{c}$
TiCl_{4}
$\mathrm{C}_{\mathbf{P}_{2} \mathrm{TiCl}_{2}}$
$\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$
EtCHO ${ }^{\circ}$
(Sn) to (LA) $+(\mathrm{A})$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(i) $-79^{\circ} \mathrm{C}, 20 \mathrm{~min}$
(ii) $-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$ in 3 h
(Sn) to (LA) $+(\mathrm{A})$
$\mathrm{CH} \mathrm{H}_{2} \mathrm{Cl}$
(i) $-78^{\circ}, 30 \mathrm{~min}$
(ii) $-50^{\circ} \mathrm{C}, 30 \mathrm{~min}$
(iii) $-30^{\circ} \mathrm{C} 1 \mathrm{~h}$
(Sn) to (LA) + (A)
$\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$
$-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1 \frac{1}{2} \mathrm{~h}$
(Sn) to (LA) $+(\mathrm{A})$
$\mathrm{CH} \mathbf{2}_{2} \mathrm{Cl},-78^{\circ} \mathrm{C}, 20$ min
$-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1 \frac{1}{2} \mathrm{~h}$
(LA) to (Sn) $+(\mathrm{A})$
RT, no solvent
(A) to premixed
(LA) + (Sn)
no solvent
(A) to premixed
(LA) + (Sn)
$-78^{\circ} \mathrm{C}, 20$ min
$-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$
$\mathrm{EtCHOHCHR}{ }^{1} \mathrm{CH}=\mathrm{CHR}^{2}$ (50)
erythro $/$ threo $=3 / 97$
$\mathrm{EtCHOHCHR}{ }^{1} \mathrm{CH}=\mathrm{CHR}^{2}$ (53)
erythro $/$ threo $=60 / 40$
$\mathrm{EtCHOHCHR}{ }^{1} \mathrm{CH}=\mathrm{CHR}^{2}(28)^{s}$
erythro $/$ threo $=60 / 40$
$\mathrm{EtCHOHCHR}^{1} \mathbf{C H}=\mathrm{CHR}^{2}$ (39) ${ }^{f}$
erythro $/$ threo $=64 / 36$
EtCHOHCHR ${ }^{1} \mathbf{C H}=$ CHR 2 (78) erythro $/$ threo $=85 / 35$ $\mathrm{MeCHOHCHR}{ }^{1} \mathrm{CH}=\mathrm{CHR}^{2}$ (70)
erythro $/$ threo $=60 / 40$
EtCHOHCHR ${ }^{1} \mathrm{CH}=\mathrm{CR}^{2}(76)$
erythro $/$ threo $=77 / 23$
${ }^{a}$ After hydrolysis. ${ }^{b}$ This study; ${ }^{c} 10 \mathrm{mmol}$. ${ }^{d}$ Obtained in situ from $\mathrm{C}_{2} \mathrm{TiCl}_{2}+\mathrm{MeCH}=\mathrm{CHCH}_{2} \mathrm{MgX}^{6}{ }^{c} 20 \mathrm{mmol}$. ${ }^{f}$ Other products cyclohexenone and cyclohexenol. ${ }^{8}$ Excess MeCHO (3 equivalents) was used to allow for polymerization of MeCHO. ${ }^{h} 2$ equivalents $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.
Table 2
Products of reaction of $\mathrm{Bu}_{3} \mathrm{SnCHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}(1 ; \mathrm{Sn})$. Lewis acid (LA) and an excess of EtCHO (A) (2.2 equivalents)

Entry No.	$(1 ; \mathbf{S n})$	Lewis acid (LA)	Addition sequence reaction conditions	Products ${ }^{\boldsymbol{a}}$ (Yield \%)		Ref.
					Other	
1	$1\left(\mathrm{R}^{2}=\mathrm{R}^{2}=\mathrm{H}\right)$	$\mathrm{TiCl}_{4}{ }^{\text {b }}$	$\begin{aligned} & (\mathrm{Sn}) \text { to }(\mathrm{A})+(\mathrm{LA}) \\ & \text { no solvent, }-50^{\circ} \mathrm{C} \end{aligned}$	$\mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{H}$ (66)		c
2		$\mathrm{BCl}_{3}{ }^{\text {d }}$	$\begin{aligned} & (\mathrm{Sn}) \text { to }(\mathrm{A})+(\mathrm{LA}) \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \end{aligned}$	$\mathrm{R}^{\mathbf{1}}=\mathrm{R}^{\mathbf{2}}=\mathbf{H} \mathbf{(6 8)}$		18
3	$\begin{aligned} & 1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right) \\ & (E) /(Z)=40 / 60 \end{aligned}$	$\mathrm{TiCl}_{4}{ }^{6}$	$\begin{aligned} & (\mathrm{Sn})+(\mathrm{A}) \rightarrow(\mathrm{LA}) \\ & \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \end{aligned}$	$\begin{aligned} & \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}(80) \\ & \text { trans } / \text { cis }=27 / 73 \end{aligned}$		${ }^{c}$
4		TiCl ${ }_{4}{ }^{\text {b }}$	$\begin{aligned} & \text { (A) to }(\mathrm{Sn})+(\mathrm{LA}) \\ & \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \text { in } 1 \frac{1}{2} \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathbf{R}^{1}=\mathbf{H}, \mathbf{R}^{2}=\mathbf{M e}(78) \\ & \text { trans } / \text { cis }=28 / 72 \end{aligned}$	(E) $-\mathrm{EtCH}=\mathrm{CMeCHO}$ (20)	c
5		$\mathrm{TiCl}_{4}{ }^{\text {b }}$	$\begin{aligned} & \text { (A) to }(\mathrm{Sn})+(\mathrm{LA}) \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \text { in } 1 \frac{1}{2} \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathbf{R}^{1}=H, R^{2}=\mathrm{Me}(51) \\ & \text { trans } / \text { cis }=88 / 12 \end{aligned}$	$\mathrm{EtCHOHCHMeCH}=\mathrm{CH}_{2}$ (12) (E) $\mathrm{EtCH}=\mathrm{CMeCHO}$ (36)	c
6		$\mathrm{TiCl}_{4}{ }^{\text {b }}$	$\begin{aligned} & (\mathrm{LA}) \text { to }(\mathrm{Sn})+(\mathrm{A}) \\ & \text { no solvent, }-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \end{aligned}$	$\begin{aligned} & \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}(49) \\ & \text { trans } / \text { cis }=45 / 55 \end{aligned}$	EtCHOHCHMeCH $=\mathrm{CH}_{2}$ (47)	c
7		$\mathrm{BCl}_{3}{ }^{\text {d }}$	(Sn) to (A$)+(\mathrm{LA})$	$\mathbf{R}^{1}=\mathbf{H}, \mathrm{R}^{2}=\mathrm{Me}$ (46)		18
8	$1\left(\mathrm{R}^{\mathbf{1}}, \mathrm{R}^{\mathbf{2}}=\left(\mathrm{CH}_{2}\right)_{3}\right)$	$\mathrm{TiCl}_{4}{ }^{\text {b }}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \text { in } 1 \frac{1}{2} \mathrm{~h} \\ & (\mathrm{Sn})+(\mathrm{A}) \text { to }(\mathrm{LA}) \\ & \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 30 \mathrm{~min} \\ & -78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \end{aligned}$	$\begin{aligned} & \text { trans } / \text { cis }=30 / 70 \\ & \mathbf{R}^{1}, \mathbf{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}(28) \\ & \text { only trans } \end{aligned}$		${ }^{c}$
9		$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}{ }^{\text {d }}$	$\begin{aligned} & (\mathrm{Sn}) \text { to }(\mathrm{A})+(\mathrm{LA}) \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 30 \mathrm{~min} \\ & -78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \end{aligned}$		4-HO-3-Me-2, 6-Et-tetra- hydropyran (63) trans $/$ cis $=12 / 88$ (E) $-\mathrm{EtCH}=\mathrm{CMeCHO}$, cyclohexenol	18
10		$\mathrm{BCl}_{3}{ }^{\text {d }}$	$\begin{aligned} & (\mathrm{Sn}) \text { to }(\mathrm{A})+(\mathrm{LA}) \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \end{aligned}$	$\mathbf{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}(17)$ $\text { trans/cis } 55 / 45$	$\mathrm{EtCHClCHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}$ (78)	18
11		$\mathrm{BuSnCl} 3{ }^{\text {c }}$	(A) to equilibrated $(\mathrm{Sn})+(\mathrm{LA})$ no solvent, $-20^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}(70) \\ & \text { trans } / \text { cis }=75 / 25 \end{aligned}$	EtCHOHCHR ${ }^{1} \mathrm{CH}=\mathrm{CHR}^{2}$	17

${ }^{a}$ After hydrolysis. ${ }^{b} 30 \mathrm{mmol}$. ${ }^{c}$ This study. ${ }^{d} 10 \mathrm{mmol}$. ${ }^{e} 40 \mathrm{mmol}$.
temperature. The so-called normal addition was used in both cases and under these conditions there is generally a high erythro-selectivity. However, a high threo-selectivity ($97 / 3$) was observed (entry 8) when the reaction temperature, after being kept at $-78^{\circ} \mathrm{C}$ (for 20 min), was allowed to rise in steadily to room temperature. The erythro-product was the major product when the reaction temperature was raised from $-78^{\circ} \mathrm{C}$ to ambient in several distinct steps. The results for the cyclohex-2-enyltin derivative $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ suggest that reactions are not complete within the short periods during which the mixtures are kept at $-78^{\circ} \mathrm{C}$ and that the exchange reactions, equilibrations, etc., must occur at higher temperatures.

Formation of 4-Chlorotetrahydropyrans

Only one stereoisomer of $2\left(X=C l, R^{1}=R^{2}=H, R=E t\right)$ is obtained from reaction of $1\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right)$, EtCHO (excess) and TiCl_{4} at $-50^{\circ} \mathrm{C}$ without solvent. A similar result was obtained when either BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ or a tin halide was used.

From $1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right)(E / Z=40 / 60), \mathrm{EtCHO}$ (excess) and TiCl_{4}, two isomers (trans and cis) were obtained in ratios dependent on the solvent and other

(trans-2)
erythro- $\mathrm{EtCH}\left(\mathrm{OM}^{\prime}\right) \mathrm{CHeCH}=\mathrm{CH}_{2}$

(erythro-adduct)

(cis-2)

$$
\begin{aligned}
& \quad\left(\mathrm{M}^{\prime}=\mathrm{TiCl}_{3} \text { or } \mathrm{R}_{n}^{3} \mathrm{SnCl}_{3-n}(n=0,1) \text {, see ret. } 2,14-16\right. \text {, } \\
& \text { and } \mathrm{BCl}_{2} \text {, see ref. } 18 \text {) }
\end{aligned}
$$

Scheme 2
conditions. Under the conditions which lead to a high threo / erythro ratio for $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHMeCH}=\mathrm{CH}_{2}$, i.e. inverse addition of EtCHO to premixed $\mathbf{1}\left(\mathrm{R}^{1}=\mathrm{H}\right.$, $\mathrm{R}^{2}=\mathrm{Me}$) and TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, (see entry 2 in Table 1) the second EtCHO molecule is incorporated to give a high trans/cis ratio (of 88/12) for 2 $\left(X=C l, R^{1}=H, R^{2}=\mathbf{M e}, R=E t\right)$ (entry 5 in Table 2). Thus trans- 2 must be formed [15] from threo- $\mathrm{EtCH}\left(\mathrm{OM}^{\prime}\right) \mathrm{CHMeCH}=\mathrm{CH}_{2}$ and cis-2 from erythro$\mathrm{EtCH}\left(\mathrm{OM}^{\prime}\right) \mathrm{CHMeCH}=\mathrm{CH}_{2}\left(\mathrm{M}^{\prime}=\mathbf{M X} \mathrm{N}_{-1}\right.$ or $\left.\mathrm{R}_{n}^{3} \mathrm{SnCl}_{3-n}, n=0,1\right)$ (see Scheme 2) as was judged to be the case for reactions provided by tin halides [15]. The yield of $2\left(X=C l, R^{1}=H, R^{2}=\mathrm{Me}, \mathrm{R}=\mathrm{Et}\right.$) is only 51%, owing partly because condensation of EtCHO to $(E)-\mathrm{EtCH}=\mathrm{CMeCHO}(36 \%)$ also takes place.

Production of $2\left(\mathrm{X}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}=\mathrm{Et}\right.$) in $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ leads (in contrast to that in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to high cis/trans ratio, irrespective of the order of mixing reagents. This suggests that in $\mathrm{Et}_{2} \mathrm{O}$ there is no trans-metallation of 1 ($\mathbf{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathbf{M e}$) probably owing to the lower Lewis acidity of $\mathrm{TiCl}_{4}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and also that the first molecule of EtCHO (probably complexed with TiCl_{4}) reacts with $1\left(\mathbf{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right.$) to give preferentially erythro- $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHMeCH}=\mathrm{CH}_{2}$. The reaction between $\mathrm{TiCl}_{4}, 1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right)$ and an excess of EtCHO in the absence of solvent gives 2 with an intermediate selectivity. The result for the reaction in presence of BCl_{3} is also included in Table 2 (entry 7); the trans / cis ratio of $30 / 70$ for $\mathbf{2}$ is difficult to correlate with the products from the incorporation of the first EtCHO molecule owing to the more complex nature of the BCl_{3} reactions [18]. The outcome of the reactions of the cyclohex-2-enylstannyl derivative $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ is also indicated in Table 2. The reaction with TiCl_{4} and an excess of EtCHO provides trans-9-chloro-2,4-diethyl-cis-3-oxabicyclo[3.3.1]nonane (10) [17]* stereospecifically in $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ (Scheme 3). This indicates that the initial reaction of EtCHO gives threo- $\mathrm{EtCH}\left(\mathrm{OM}^{\prime}\right) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}$, a similar result was found for reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at this temperature (entry 8 in Table 1).

Results for reactions involving other Lewis acids $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{BCl}_{3}$ and BuSnCl_{3} are listed in Table 2 and show that there are differences in the trans / cis ratios. It is noteworthy that $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ is alone among the Lewis acids in yielding 4-hydroxy-tetrahydropyran derivatives; all the others give rise to the 4-halo-analogues.


```
\(\mathrm{MX} \mathrm{N}=\mathrm{TiCl}_{4}\) (or \(\mathrm{BCl}_{3}\) and \(\mathrm{BuSnCl}_{3}\) )
\(M^{\prime}=\mathrm{TiCl}_{3}\) (or \(\mathrm{BuSnCl}_{2}\), see ref. 17, and \(\mathrm{BCl}_{2}\), see ref. 18)
```

Scheme 3

[^1]
Experimental

Organotin compounds 1 were made by standard methods [10]. Titanium tetrachloride and $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ were commercial samples. Aldehydes were distilled prior to use.

General reaction procedure

The reagents were mixed in a particular sequence in a given solvent at $-78^{\circ} \mathrm{C}$ (or another temperature) under N_{2}. The mixtures were kept at set temperatures for a specified period. After hydrolysis with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the organic material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the extracts dried, and the organic products separated by fractional distillation. Identification of products was by GC and ${ }^{13} \mathrm{C}$ NMR and IR spectroscopy, and comparison with authentic products obtained in previous studies.

Reaction of EtCHO and $I\left(R^{1}=R^{2}=H\right)$
(a) Compound $1\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, 30 \mathrm{mmol}\right.$) and EtCHO (30 mmol) was added to $\mathrm{TiCl}_{4}(30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. Product: $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ $(2.4 \mathrm{~g}, 80 \%)$; identical to an authentic sample.
(b) A mixture of $1\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, 30 \mathrm{mmol}\right)$ and EtCHO (66 mmol) was added to TiCl_{4} (30 mmol) at $-50^{\circ} \mathrm{C}$ under N_{2}. Product: 4-Chloro-2,6-diethyltetrahydropyran ($3.5 \mathrm{~g}, 66 \%$); identical to an authentic sample.

Reaction of EtCHO and 1 ($R^{1}=H, R^{2}=M e ; Z / E=40 / 60$)
(a) To the solid mixture obtained from $1\left(\mathbf{R}^{1}=\mathbf{H}, \mathbf{R}^{2}=\mathrm{Me} ; 30 \mathrm{mmol}\right)$ and TiCl_{4} (30 mmol) under N_{2} at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml}$). The temperature was increased to $-20^{\circ} \mathrm{C}$ to aid dissolution and the dark-brown solution then recooled to $-78^{\circ} \mathrm{C}$ and treated with EtCHO (66 mmol). The solution was allowed to reach room temperature during $1 \frac{1}{2} \mathrm{~h}$. Total product: 4.6 g . Products: (i) 4-chloro-3-methyl-2,6-diethyltetrahydropyran (78\%): trans/cis $=28 / 72$; identical with authentic samples, and (ii) (E)- $\mathrm{EtCH}=\mathrm{CMeCHO}$ (20\%), identified by GC.
(b) A solution of $\mathrm{TiCl}_{4}(30 \mathrm{mmol})$ and $1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} ; 30 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml) at $-78^{\circ} \mathrm{C}$ under N_{2} was kept at $-78^{\circ} \mathrm{C}$ for 30 min and EtCHO (66 mmol) was then added. The mixture was allowed to warm to room temperature in $1 \frac{1}{2} \mathrm{~h}$, then kept at room temperature for 2 h before work-up. Total products 2.6 g . Products: (i) 4-chloro-3-methyl-2,6-diethyltetrahydropyran (51\%): trans/cis = $88 / 12$, (ii) $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHMeCH}=\mathrm{CH}_{2}$ (12\%): mixture of threo- and erythro-isomers, and (iii) (E) $-\mathrm{EtCH}=\mathrm{CMeCHO}$ (36\%), all identical to authentic samples.
(c) To a solution of $\mathrm{TiCl}_{4}(30 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ under N_{2} was added a mixture of $1\left(\mathbf{R}^{1}=H, R^{2}=\mathrm{Me} ; 30 \mathrm{mmol}\right)$ and EtCHO (66 mmol). The mixture was allowed to warm to room temperature during $1 \frac{1}{2} h$ then kept at room temperature until work-up. Product: 4-chloro-3-methyl-2,6-diethyltetrahydropyran ($5.2 \mathrm{~g}, 80 \%$): trans $/$ cis $=27 / 73$.
(d) Compound $\mathrm{TiCl}_{4}(30 \mathrm{mmol})$ was added to $1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} ; 30 \mathrm{mmol}\right)$ and EtCHO (66 mmol) at $-78^{\circ} \mathrm{C}$ without a solvent. An exothermic reaction ensued, with development of a bright-orange colour. The mixtures was allowed to warm to room temperature during $1 \frac{1}{2} \mathrm{~h}$ and then kept at room temperature for 1 h before
work-up. Total product 3.7 g. Products: (i) 4-chloro-3-methyl-2,6-diethyltetrahydropyran (49\%), trans / cis $=45 / 55$, and (ii) $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHMeCH}=\mathrm{CH}_{2}$ (47\%).
(e) To a mixture of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(10 \mathrm{mmol})$ and $\mathrm{EtCHO}(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 $\mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added $1\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} ; 10 \mathrm{mmol}\right)$. The mixture was allowed to warm to room temperature during $1 \frac{1}{2} \mathrm{~h}$ and left overnight at that room temperature. Total products 0.45 g. Products: (i) $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHMeCH}=\mathrm{CH}_{2}$ (58%), erythro $/$ threo $=40 / 60$, and (ii) $(Z)=\mathrm{EtCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHMe}(42 \%)$.

Reaction of EtCHO and $1\left(R^{\prime}, R^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$
(a) Compound $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} ; 10 \mathrm{mmol}\right)$ was added to a solution of TiCl_{4} $(10 \mathrm{mmol})$ and $\mathrm{EtCHO}(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The solution was kept at $-78^{\circ} \mathrm{C}$ for 20 min and then allowed to warm to room temperature during 3 h. Product: $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} ; 0.7 \mathrm{~g}\right)$, erythro / threo $=$ 5/95.
(b) As in (a) but with 20 mmol reagents, and 1 h from $-78^{\circ} \mathrm{C}$ to room temperature. Product: $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} ; 1.0 \mathrm{~g}\right)$, erythro $/$ threo $=2 / 98$.
(c) Compound $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} ; 20 \mathrm{mmol}\right)$ was added to $\mathrm{TiCl}_{4}(20 \mathrm{mmol})$ and EtCHO (20 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The solution was kept (i) at $-78^{\circ} \mathrm{C}$ for 30 min , then (ii) at $-50^{\circ} \mathrm{C}$ for 30 min (colour yellow-brown), and finally (iii) at $-30^{\circ} \mathrm{C}$ for 1 h (colour ochre). Product: $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}$ $\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} ; 1.5 \mathrm{~g}\right)$, erythro $/$ threo $=60 / 40$.
(d) To a solution of $\mathrm{TiCl}_{4}(30 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added a mixture of $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} ; 30 \mathrm{mmol}\right)$ and EtCHO (66 mmol). The mixture was kept at $-78^{\circ} \mathrm{C}$ for 30 min and then allowed to warm to room temperature during 3 h. Product: trans-9-chloro-2,4-diethyl-cis-3-oxabycyclo[3.3.1]nonane ($1.8 \mathrm{~g}, 28 \%$). B.p. $80^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Lit. value, $135^{\circ} \mathrm{C} / 10 \mathrm{mmHg}$) [17].
(e) To a mixture of $\mathrm{EtCHO}(10 \mathrm{mmol})$ and $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} ; 10 \mathrm{mmol}\right)$. The mixture was kept at $-78^{\circ} \mathrm{C}$ for 20 min and then allowed to warm to room temperature during $1 \frac{1}{2} \mathrm{~h}$. Total product: 0.5 g . Products: (i) $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right.$ 28%), erythro $/$ threo $=60 / 40$, (ii) cyclohex-2-enol (50%), and (iii) cyclohex-2-enone, all identical with authentic samples.
(f) Repeated (e) using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent. Products: (i) $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHR}^{1}$ $\mathrm{CH}=\mathrm{CHR}^{2}\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} ; 39 \%\right)$, erythro $/$ threo $=64 / 36$, (ii) cyclohex-2-enol (46\%), and (iii) cyclohex-2-enone (15%).
(g) An equimolar mixture of $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ and $\mathrm{EtCHO}(10 \mathrm{mmol})$ was added, with stirring to solid $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$. The mixture was stirred for 4 h . Product: $\mathrm{EtCH}(\mathrm{OH}) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right), 1.1 \mathrm{~g}(78 \%)$; erythro $/$ threo $=65 / 35$.

Reaction of $1\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ and MeCHO
An equimolar mixture of $1\left(\mathbf{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right)$ and $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}(10 \mathrm{mmol})$ was stirred for 3 h before $\mathrm{MeCHO}(30 \mathrm{mmol}$) was added. The mixture was stirred for 6 h. Product: $\mathrm{MeCH}(\mathrm{OH}) \mathrm{CHR}^{1} \mathrm{CH}=\mathrm{CHR}^{2}\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}\right), 1 \mathrm{~g}$ (79%), erythro/ threo $=60 / 40$.

Acknowledgements

This work was supported by the C.N.R. (Roma) and the Ministero della Pubblica Istruzione (Roma). A NATO travel grant (to J.L.W./G.T.) is greatefully acknowledged. We thank also for partial support under the "Progetto Finalizzato per la Chimica Fine" CNR, Roma.

References

1 Y. Yamanoto, Accouns. Chem. Res., 20 (1987) 243. see also Aldrichimica Acta, 30 (1987) 45,
2 G. Tagliavini, Reviews Silicon, Germanium, Tin and Lead Cmpds., 8 (1985) 237.
3 C. Hull, C.V. Mortlock, and E.J. Thomas, Tetrahedron, 45 (1989) 1007.
4 J.-P. Quintard, G. Dumartin, B. Elissondo, A. Rahm and M. Pereyre, Tetrahedron, 45 (1989) 1017.
S J.M. Coxon, S.J. van Eyk, and P.J. Steel, Tetrahedron, 45 (1989) 1029.
6 J.A. Marshall and M.Y. Gung, Tetrahedron, 45 (1989) 1043.
7 S.E. Denmark, E.J. Weber, T.M. Wilson, and T.M. Willson, Tetrahedron, 45 (1989) 1053.
8 S.E. Denmark, B.R. Henke, and E. Weber, J. Am. Chem. Soc., 109 (1987) 2512, and reference therein.
9 Y. Yamamoto, S. Hatsuya, and J.I. Yamada, J. Chem. Soc. Chem. Comm., (1987) 561.
10 A. Boaretto, D. Marton, G. Tagliavini, and P. Ganis, J. Organomet. Chem., 321 (1987) 199.
11 H.T. Reetz, M. Hüllmann, W. Massa, S. Berger, p. Rademacher, and P. Heymanns, J. Am. Chem. Soc., 108 (1986) 2405.
12 G.E. Keck and E.J. Enholm, J. Org. Chem., 50 (1985) 147.
13 A. Gambaro, A. Boaretto, D. Marton, and G. Tagliavini, J. Organomet. Chem., 288 (1983) 283.
14 A. Boaretto, D. Marton, G. Tagliavini, and A. Gambaro, Inorg. Chim. Acta, 77 (1983) L153.
15 A. Gambaro, A. Boaretto, D. Marton, and G. Tagliavini, J. Organomet. Chem., 260 (1984) 255.
16 A. Boaretto, D. Furlani, D. Marton, and G. Tagliavini, J. Organomet. Chem., 299 (1986) 157.
17 D. Marton, D. Furlani and G. Tagliavini, Gazz. Chim. It., 117 (1987) 189.
18 D. Marton, G. Tagliavini, M. Zordan, and J.L. Wardell, J. Organomet. Chem., 390 (1990) 127.
19 Y. Yamamoto, H. Yatagai, Y. Ishihara, and K. Maruyama, Tetrahedron, 40 (1984) 2239.
20 G.E. Kcck, D.E. Abbott, E.P. Buden, and E.J. Enholm, Tetrahcdron Lett., 25 (1984) 3927.
21 Y. Naruta, Y. Nishigaichi, and K. Maruyama, Tetrahedron, 45 (1989) 1067; see also J. Org. Chem., 33 (1988) 1192.

22 P. Harston, J.L. Wardell, D. Marton, G. Tagliavini, and P.J. Smith, Inorg. Chim. Acta, 162 (1989) 245.

23 S.E. Denmark, T.M. Wilson, and T.M. Willson, J. Am. Chem. Soc., 110 (1988) 984.
24 Y. Yamamoto, H. Yatagai, Y. Naruta, and K. Maruyama, J. Am. Chem. Soc., 102 (1980) 7107.
25 B. Weidmann and D. Seebach, Angew. Chem. Int. Ed. Engl., 22 (1983) 31.
26 F. Sato, K. Iida, S. Iijima, H. Moriya and M. Sato, J. Chem. Soc. Chem. Comm., (1981) 1140.
27 Y. Yamamoto and K. Maruyama, J. Organomet. Chem., 284 (1985) C45.
28 A. Gambaro, P. Ganis, D. Marton, V. Peruzzo and G. Tagliavini, J. Organomet. Chem., 231 (1982) 307.

29 D.R. Stapp, and J.C. Randall, J. Org. Chem., 35 (1970) 2948.

[^0]: * Species 7 was the major homoallyl alcohol product from such reactions.

[^1]: * The description of the ring as cis is according the nomenclature of N.P. Volynskii (see ref. 5 in ref. 29. See also ref. 29 for the designation of the trans-isomerism.

