Journal of Organometallic Chemistry, 391 (1990) 295-305 Elsevier Sequoia S.A., Lausanne JOM 20869

Formation of homoallyl alcohols and 4-chlorotetrahydropyrans from allyl-stannanes, aldehydes and $TiCl_4$ or Cp_2TiCl_2

Daniele Marton, Giuseppe Tagliavini *, Michele Zordan

Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Università di Padova, via Marzolo 1, 1-35131 Padova (Italy)

and James L. Wardell

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE (U.K.) (Received February 8th, 1990)

Abstract

Reactions between Bu₃SnCHR¹CH=CHR² (1; R¹ = H, R² = H or Me; R¹, R² = (CH₂)₃) and EtCHO in the presence of TiCl₄ or Cp₂TiCl₂ are reported. The compound, Cp₂TiCl₂, has been found to be an effective Lewis acid catalyst for the allylation of EtCHO using 1 (R¹ = H, R² = Me) and 1 (R¹, R² = (CH₂)₃) in CH₂Cl₂ or Et₂O solutions at -78° C; the products after hydrolysis are homoallyl alcohols with stereo- and regio-selectivities different from those found for TiCl₄ reactions. Reactions with an excess of EtCHO in the presence of TiCl₄ give 4-Cl-3-R¹-5-R²-2,6-2Et-tetrahydropyrans (2) via insertions of a second EtCHO into the metal-O bond of the initially produced homoallyl alcoholate: the *trans*-2 compounds are obtained from *threo*-EtCH(OM')CHR²CH=CHR¹ and *cis*-2 from *erythro*-EtCH(OM')CHR²CH=CHR¹ (e.g., M' = TiCl₃).

Introduction

Homoallyl alcohols can be conveniently prepared by allylation of aldehydes with allylstannanes in the presence of a Lewis acid [1-12]. A second molecule of RCHO can also be incorporated [13-17], via insertion into the M'-O bond of the homoallyl alcoholates 3 and 4, to give 4-halo- or 4-hydroxy-tetrahydropyrans (2), previously obtained from the reactions in the presence of $BF_3 \cdot Et_2O$, tin halides, or BCl_3 [18] (see Scheme 1).

The formation of homoallyl alcohols has been especially well studied, with much attention paid to the factors controlling the stereo- and regio-selectivities. The synthesis of the tetrahydropyrans has been less studied. We present here some observations on the synthesis of 4-chlorotetrahydropyran derivatives (2; Y = Cl)

$$\mathbb{R}^{1}CH=CH-CHR^{2}-CHR=OH + \mathbb{R}^{2}CH=CH-CHR^{1}-CHR=OH$$

$$\mathbb{R}^{2}CH=CHCHR^{1}SnR_{3}^{3} + \mathbb{R}CHO \xrightarrow{MX_{N}} \mathbb{R}^{1}CH=CH-CHR^{2}-CHR=OM^{1} + \mathbb{R}^{2}CH=CH-CHR^{1}-CHR=OM^{1}$$

$$(1) \qquad (3) \qquad \downarrow + \mathbb{R}CHO$$

$$\mathbb{R}^{2} \xrightarrow{Y} \mathbb{R}^{1} \mathbb{R}^{1}$$

$$\mathbb{R}^{2} \xrightarrow{Y} \mathbb{R}^{1} \mathbb{R}^{1}$$

$$\mathbb{R}^{2} \xrightarrow{Y} \mathbb{R}^{1} \mathbb{R}^{1}$$

$$\mathbb{R}^{2} \xrightarrow{Y} \mathbb{R}^{1}$$

$$\mathbb{R}^{2$$

Scheme 1

with $TiCl_4$ as the added Lewis acid. In addition, a comparison has been made of the effects of Cp_2TiCl_2 and $TiCl_4$ as the added Lewis acid in the formation of homoallyl alcohols from crotyl- and cyclohex-2-enyl-stannanes.

Results and discussion

While allylation of RCHO can be brought about by use of an allylstannane 1 alone, on heating or under pressure [19], the presence of a Lewis acid, MX_N , e.g., $BF_3 \cdot OEt_2$, $TiCl_4$ or $R_n^3 SnCl_{4-n}$ (n = 0-2), allows much milder conditions, e.g., temperatures of -78° C, to be employed. Furthermore, the presence of the added Lewis acid can give rise to significantly different selectivities among the homoallyl alcohol products. The added MX_N has been considered to activate the aldehyde, via complexation [7–9], and/or to take part in exchange reactions with 1 to generate new and more active allylating species, [R¹CH=CHCHR²]MX_{N-1}. The stereoselectivities of products 3 and 4 (Scheme 1) can depend on the particular allylating agent as well as the structure of the complexed aldehyde. The involvement of a pre-transmetallation step being increasing accepted, especially for the TiCl₄ [20] and $R_n^3SnCl_{4-n}$ reactions [10,16,21] (as well as those with BCl₃ [18]). No evidence has yet been found for the occurrence of transmetallations between BF₃ · OEt₂ and 1 in solvents such as CH₂Cl₂ at -78° C.

Irrespective of the order of mixing of the reagents, mixtures of $BF_3 \cdot OEt_2$, RCHO and either (Z)- or (E)-crotylstannanes give CH_2 =CHCHMeCHROH (5) with an *erythro*-stereo-selectivity [24]. In contrast TiCl₄-promoted reactions have stereo-selectivities markedly dependent on the order of mixing: normal addition (crotylstannane added to TiCl₄ and RCHO at $-78^{\circ}C$) gives 5 with a high *erythro*-selectivity (the active allylating agent is considered to be the allylstannane), whereas inverse addition (RCHO added to pre-equilibrated TiCl₄-crotylstannane mixture) gives 5 with a high *threo*-selectivity (a crotyl-titanium species is probably the active species) [20]. Use of related titanium compounds is known from other studies to lead to products with high *threo*-selectivities [25].

Three allylstannanes 1 were used in this study with TiCl₄ or Cp₂TiCl₂ namely (1, $R^1 = R^2 = H$), (1, $R^1 = H$, $R^2 = Me$) (E/Z = 40/60) and (1, R^1 , $R^2 = (CH_2)_3$). Details of results for the formation of homoallyl alcohols from (1, R^1 , H, $R^2 = Me$) and (1, R^1 , $R^2 = (CH_2)_3$) are given in Table 1 for reactions involving TiCl₄ or Cp₂TiCl₂ and some other selected Lewis acids.

The halide Cp₂TiCl₂ is as an effective Lewis acid in these reactions. There are however clear differences (compare entries 1-3) between the results for Cp₂TiCl₂ (using the so-called normal addition) and for $TiCl_4$ (using either the normal or inverse addition) [20] in CH₂Cl₂ solution, initially at -78° C, in terms not only of the erythro/threo selectivities observed for EtCH(OH)CHMeCH=CH₂ (6) but also of the high yield (42%) of (Z)-EtCH(OH)CH₂CH=CHMe (7) * obtained from the Cp₂TiCl₂ reaction. The formation of 7 suggests the involvement of CH₂=CHCHMe-metal allylating agents as well of MeCH=CHCH₂-metal species (for formation of 6). High yields of 7 were obtained from reactions involving the addition of 1 ($\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{M}e$) and EtCHO to Bu₂SnCl₂, in which Bu,ClSnCHMeCH=CH, is the actual allylating species [10]. The erythro / threo ratio for 6 obtained in the Cp₂TiCl₂ (1, $R^1 = H$, $R^2 = Me$; E/Z = 40/60) reaction (entry 3) is similar to that for reaction in Et_2O at $-35^{\circ}C$ using $Cp_2TiCl(crotyl)$ (8), pre-formed [26] from (E)-MeCH=CHCH₂MgBr and Cp₂ TiCl₂ (entry 5). It appears that stereoselectivities in reactions of 8 in Et₂O solution are somewhat temperaturedependent [26,27] (entries 4 and 5).

As shown by entries 10 and 11 in Table 1, Cp_2TiCl_2 is mildy in the reaction of tributylcyclohex-2-enyltin (1, R^1 , $R^2 = (CH_2)_3$) with EtCHO in both CH_2Cl_2 and Et_2O solutions. As well as the homo allyl alcohol, $EtCH(OH)CHR^1CH=CHR^2$ (9, R^1 , $R^2 = (CH_2)_3$), produced in modest yields (28 and 39%), products of decomposition of 1 (R^1 , $R^2 = (CH_2)_3$) viz. cyclohexenone and cyclohexenol, were also isolated. Similar *erythro / threo* ratios (ca. 60/40) for 9 were observed in both reactions. This ratio was also observed when Bu₂SnCl₂ was used at 25°C in the absence of solvent (entry 12) and also in one of the two TiCl₄ reactions involving 1 (R^1 , $R^2 = (CH_2)_3$) (entry 8). A similar *erythro / threo* ratio (for MeCH(OH)CHR¹CH=CHR²) was also observed in the Bu₂SnCl₂, MeCHO and 1 (R^1 , $R^2 = (CH_2)_3$) reaction. Only the BF₃ · OEt₂ reaction [18] (entry 14) showed a higher *erythro*-selectivity.

Compound 1 (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$) can exist only as a (Z)-alkene, and no apparent allyl migration or isomerization occurs in exchange reactions with MX_N . The involvement of the Lewis acid thus can only provide a new allyl-metal species, $X_{N-1}MCHCH=CH(CH_2)_3$ and/or a complexed aldehyde.

The Bu₂SnCl₂ reactions (with MeCHO or EtCHO) and 1 (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$) give the same *erythro/threo* ratio for the homo-allyl alcohols even when different sequences of adding reagents were utilized. Use of these different sequences gave rise to quite distinct *erythro/threo* ratios when crotylSnBu₃ was used.

The different stereoselectivities obtained in the two TiCl₄, EtCHO and 1 (R¹, $R^2 = (CH_2)_3$) reactions (entries 8 and 9) indicate the importance of the reaction

^{*} Species 7 was the major homoallyl alcohol product from such reactions.

Table 1

∢	
E E	
acio	ł
ewis	
d L	
ı) an	İ
l; Sr	
R ² ()	
CHI	
EH	ļ
HR	
SnCI	
Bu ₃ S	
۲), I	ł
ЮH	Į
RC	
s of	
ount	ļ
r am	ł
nolai	ł
quin	ł
en e	l
etwe	ł
ns b	
actio	
of re	
cts c	
npo	
£	I

Entry	(1)	Lewis Acid	RCHO	Addition sequence	Products ^a (Yields %)	Ref.
No.	(Sn)	(LA)	(v)	reaction conditions		
1	$(Z)-1, (R^{1} = H, R^{2} = Me)$	TiCl 4	cyclo-C ₆ H ₁₁ CHO	(Sn) to (LA)+(A)	cyclo-C ₆ H ₁₁ CHOHCHMeCH=CH ₂ (97)	20
				CH ₂ Cl ₂ , – 78°C	erythro/threo = 97/7	
					+ cyclo-C ₆ H ₁₁ CHOHCH ₂ CH=CHMe (3)	
					Z/E = 81/19	
7		TiCI.	cyclo-C ₆ H ₁₁ CHO	(A) to premixed	cyclo-C ₆ H ₁₁ CHOHCHMeCH=CH ₂ (95)	20
				(LA) + (Sn)	erythro/threo = 5/95	
					+ (E) -cyclo-C ₆ H ₁₁ CHOHCH ₂ CH=CHME (5)	
e	$1 (R^1 = H, R^2 = Mc)$	CP ₂ TiCl ₂ *	EtCHO	(Sn) to $(LA) + (A)$	EICHOHCHMeCH=CH ₂ (58)	9
	(E):(Z) = 40:60			CH ₂ Cl ₂	erythro/threo = 40/60	
					+(Z)-EtCHOHCH ₂ CH=CHMe (42)	
4	CP ₂ TiCl(CH ₂ CH=CHMe) ^d		PhCHO	$Et_2O, -78^{\circ}C$	PhCHOHCHMeCH=CH ₂	27
					erythro/threo = 20/80	
5	CP ₂ TiCl(CH ₂ CH=CHMe)		RCHO	Et ₂ O, -35°C	RCHOHCHMeCH=CH2	26
					R = Ph; erythro/threo = 40/60	
					$\mathbf{R} = \mathbf{E}t$, erythro/threo = 36/64	
6	$1 (R^1 = H, R^2 = Me)$	Bu ₂ SnCl ₂	EICHO	(Sn) + (A) to (LA)	EICHOHCHMeCH=CH ₂ (4-13)	28
	(E):(Z) = 33:66			Neat, 25 ° C	erythro > three	
					+ (Z) -EtCHOHCH ₂ CH=CHMe (87–96)	
7		Bu ₂ SnCl ₂	EICHO	(A) to equilibrated	EtCHOHCHMeCH=CH, (80)	10
		1		(Sn) + (LA)		
				Neat, 25°C	erythro/threo = 38/62	

٩	۵	۵	4	4	٩	18	and the second second in the second
EtCHOHCHR ¹ CH=CHR ² (50) erythro/threo = 3/97	EtCHOHCHR ¹ CH=CHR ² (53) erythro/threo = 60/40	EtCHOHCHR ¹ CH=CHR ² (28) [/] erythro/threo = 60/40	EiCHOHCHR ¹ CH=CHR ² (39) [/] erythro/threo = 64/36	EICHOHCHR ¹ CH=CHR ² (78) ervihro/threo = 85/35	MeCHOHCHR ^I CH=CHR ² (70) erythro/threo = 60/40	EtCHOHCHR ¹ CH=CR ² (76) erythro/threo = 77/23	
(Sn) to $(LA) + (A)$ CH_2Cl_2 (i) $-79^{\circ}C$, 20 min (ii) $-78^{\circ}C \rightarrow RT$ in 3 h	(Sn) to (LA) + (A) CH ₂ Cl (i) - 78°, 30 min (ii) - 50°C, 30 min (iii) - 30°C 1 h	(Sn) to (LA) + (A) Et ₂ O, -78° C, 20 min -78° C \rightarrow RT, 1 $\frac{1}{2}$ h	(Sn) to (LA) + (A) CH ₂ Cl ₂ , - 78°C, 20 min - 78°C \rightarrow RT,1 $\frac{1}{2}$ h	(LA) to (Sn)+(A) RT, no solvent	(A) to premixed(LA)+(Sn)no solvent	(A) to premixed (LA) + (Sn) -78° C, 20 min -78° C \rightarrow RT	
EICHO °	EtCHO *	EtCHO 6		EICHO 6	MeCHO	E(CHO ^c	
TICI.		Cp ₂ TiCl ₂		Bu ₂ SnCl ₂		BF ₃ ·OEt ₂ ^h	
$1 (R^1, R^2 = (CH_2)_3)$							a = a = a = a = a = a = a = a = a = a =
œ	6	10	11	12	13	14	9

^a After hydrolysis. ^b This study; ^c 10 mmol. ^d Obtained in situ from $Cp_2TiCl_2 + MeCH=CHCH_2MgX$. ^c 20 mmol. ^f Other products cyclohexenone and cyclohexenol. ^g Excess MeCHO (3 equivalents) was used to allow for polymerization of MeCHO. ^h 2 equivalents BF₃·OEt₂.

Products	of reaction of Bu ₃ SnCHF	נו; Sth=CHR ² נו	n). Lewis acid (LA) and an excess of	EtCHO (A) (2.2 equivalent	s)	
Entry	(1; Sn)	Lewis acid	Addition sequence	Products " (Yield %)		Ref.
No.		(Y)	reaction conditions	\mathbf{R}^{i}	Other	
-	$1\left(\mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{H}\right)$	Tici,*	(Sn) to (A) + (LA) no solvent, $-50 \circ C$	$R^1 = R^2 = H (66)$		ţ
7		BCI ₃ ⁴	(Sn) to (A)+(LA) CH,Cl ₃ , $-78^{\circ}C \rightarrow RT$	$\mathbf{R}^{1} = \mathbf{R}^{2} = \mathbf{H} \ (68)$		18
3	$1 (R^{1} = H, R^{2} = Me)$	та, '	$(Sn) + (A) \rightarrow (LA)$	$R^{1} = H, R^{2} = Me (80)$		u
4		TiCI4 "	$L(_{2}^{2}, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7$	$R^{1} = H, R^{2} = Mc (78)$ trans /cis = 28 /72	(E)-EtCH=CMcCHO (20)	U.
s		TiCI, ^b	(A) to (Sn) + (LA)	$R^{1} = H, R^{2} = Me (51)$	EICHOHCHMeCH=CH ₂ (12)	U
9		ncı."	$CH_2Cl_2, -78^{\circ}C \rightarrow RT \text{ in } 1\frac{1}{2} \text{ h}$ (LA) to (Sn)+(A)	rans/cis = 88/12 $R^{1} = H, R^{2} = Me (49)$	(E)-EtCH=CMeCHO (36) EtCHOHCHMeCH=CH, (47)	U
			no solvent, -78° C \rightarrow RT (Sn) to (A) + (I A)	trans/cis = $45/55$ $R^1 = H R^2 = Me (46)$		81
-		653	$CH, CI, -78^{\circ}C \rightarrow RT \text{ in } 1\frac{1}{7} \text{ h}$	trans/cis = 30/70		ì
÷	$1 (R^1, R^2 = (CH_2)_3)$	TiCi4 b	(Sn) + (Å) to (LA) Et ₂ O, - 78°C, 30 min - 78°C \rightarrow RT	R^{1} , $R^{2} = (CH_{2})_{3}$ (28) only trans		ŭ
6		BF ₃ .OEt ₂ ^d	(Sn) to (A) + (LA) $CH_2Cl_2, -78°C, 30 \text{ min}$ $-78°C \rightarrow RT$		4-HO-3-Me-2, 6-Ei-tetra- hydropyran (63) <i>trans/cis</i> = 12/88	18
10		BCI ₃ ^d	(Sn) to (A) + (LA) CH,Cl., - 78°C → RT	R^{1} , $R^{2} = (CH_{2})_{3}$ (17) trans/cis 55/45	(E) EICH=CMeCHO, cyclonexen EtCHCICHR ¹ CH=CHR ² (78)	01 18
11		BuSnCl ₃ ^c	(A) to equilibrated (Sn)+(LA) no solvent, -20°C	$R^{1}, R^{2} = (CH_{2})_{3}$ (70) trans/cis = 75/25	ErCHOHCHR ² CH=CHR ²	17
^a After h	tydrolysis. ^b 30 mmol. ^c T	This study. ^d 10 m	mol. * 40 mmol.			

300

Table 2

temperature. The so-called normal addition was used in both cases and under these conditions there is generally a high *erythro*-selectivity. However, a high *threo*-selectivity (97/3) was observed (entry 8) when the reaction temperature, after being kept at -78° C (for 20 min), was allowed to rise in steadily to room temperature. The *erythro*-product was the major product when the reaction temperature was raised from -78° C to ambient in several distinct steps. The results for the cyclohex-2-enyltin derivative 1 (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$) suggest that reactions are not complete within the short periods during which the mixtures are kept at -78° C and that the exchange reactions, equilibrations, etc., must occur at higher temperatures.

Formation of 4-Chlorotetrahydropyrans

Only one stereoisomer of 2 (X = Cl, $R^1 = R^2 = H$, R = Et) is obtained from reaction of 1 ($R^1 = R^2 = H$), EtCHO (excess) and TiCl₄ at -50°C without solvent. A similar result was obtained when either BCl₃ in CH₂Cl₂ at -78°C or a tin halide was used.

From 1 ($\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{M}e$) (E/Z = 40/60), EtCHO (excess) and TiCl₄, two isomers (*trans* and *cis*) were obtained in ratios dependent on the solvent and other

(M'=TiCl₃ or $R_n^3 \operatorname{SnCl}_{3-n}$ (n = 0,1), see ref. 2, 14–16, and BCl₂, see ref. 18) conditions. Under the conditions which lead to a high threo/erythro ratio for EtCH(OH)CHMeCH=CH₂, i.e. inverse addition of EtCHO to premixed 1 ($\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$) and TiCl₄ in CH₂Cl₂ at -78°C, (see entry 2 in Table 1) the second EtCHO molecule is incorporated to give a high trans/cis ratio (of 88/12) for 2 (X = Cl, $\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$, $\mathbb{R} = Et$) (entry 5 in Table 2). Thus trans-2 must be formed [15] from threo-EtCH(OM')CHMeCH=CH₂ and cis-2 from erythro-EtCH(OM')CHMeCH=CH₂ (M' = MX_{N-1} or \mathbb{R}^3_n SnCl_{3-n}, n = 0, 1) (see Scheme 2) as was judged to be the case for reactions provided by tin halides [15]. The yield of 2 (X = Cl, $\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$, $\mathbb{R} = Et$) is only 51%, owing partly because condensation of EtCHO to (E)-EtCH=CMeCHO (36%) also takes place.

Production of 2 (X = Cl, $R^1 = H$, $R^2 = Me$, R = Et) in Et₂O at -78°C leads (in contrast to that in CH₂Cl₂) to high cis/trans ratio, irrespective of the order of mixing reagents. This suggests that in Et₂O there is no trans-metallation of 1 $(R^1 = H, R^2 = Me)$ probably owing to the lower Lewis acidity of TiCl₄(Et₂O) and also that the first molecule of EtCHO (probably complexed with TiCl₄) reacts with 1 ($R^1 = H$, $R^2 = Me$) to give preferentially erythro-EtCH(OH)CHMeCH=CH₂. The reaction between TiCl₄, 1 ($R^1 = H$, $R^2 = Me$) and an excess of EtCHO in the absence of solvent gives 2 with an intermediate selectivity. The result for the reaction in presence of BCl₃ is also included in Table 2 (entry 7); the trans/cis ratio of 30/70 for 2 is difficult to correlate with the products from the incorporation of the first EtCHO molecule owing to the more complex nature of the BCl₃ reactions [18]. The outcome of the reactions of the cyclohex-2-enylstannyl derivative 1 (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$) is also indicated in Table 2. The reaction with TiCl₄ and an excess of EtCHO provides trans-9-chloro-2,4-diethyl-cis-3-oxabicyclo[3.3.1]nonane (10) $[17]^*$ stereospecifically in Et₂O at -78° C (Scheme 3). This indicates that the initial reaction of EtCHO gives three-EtCH(OM')CHR¹CH=CHR², a similar result was found for reaction in CH_2Cl_2 at this temperature (entry 8 in Table 1).

Results for reactions involving other Lewis acids $BF_3 \cdot OEt_2$, BCl_3 and $BuSnCl_3$ are listed in Table 2 and show that there are differences in the *trans/cis* ratios. It is noteworthy that $BF_3 \cdot OEt_2$ is alone among the Lewis acids in yielding 4-hydroxy-te-trahydropyran derivatives; all the others give rise to the 4-halo-analogues.

MX_N = TiCl₄ (or BCl₃ and BuSnCl₃)

 $M' = TiCl_3$ (or $BuSnCl_2$, see ref. 17, and BCl_2 , see ref. 18)

Scheme 3

^{*} The description of the ring as *cis* is according the nomenclature of N.P. Volynskii (see ref. 5 in ref. 29. See also ref. 29 for the designation of the *trans*-isomerism.

Experimental

Organotin compounds 1 were made by standard methods [10]. Titanium tetrachloride and Cp_2TiCl_2 were commercial samples. Aldehydes were distilled prior to use.

General reaction procedure

The reagents were mixed in a particular sequence in a given solvent at -78° C (or another temperature) under N₂. The mixtures were kept at set temperatures for a specified period. After hydrolysis with saturated aqueous NH₄Cl, the organic material was extracted with CH₂Cl₂, the extracts dried, and the organic products separated by fractional distillation. Identification of products was by GC and ¹³C NMR and IR spectroscopy, and comparison with authentic products obtained in previous studies.

Reaction of EtCHO and 1 ($R^1 = R^2 = H$)

(a) Compound 1 ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$, 30 mmol) and EtCHO (30 mmol) was added to TiCl₄ (30 mmol) in CH₂Cl₂ (20 ml) at -78°C. Product: EtCH(OH)CH₂CH=CH₂ (2.4 g, 80%); identical to an authentic sample.

(b) A mixture of 1 ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$, 30 mmol) and EtCHO (66 mmol) was added to TiCl₄ (30 mmol) at -50 °C under N₂. Product: 4-Chloro-2,6-diethyltetrahydropyran (3.5 g, 66%); identical to an authentic sample.

Reaction of EtCHO and 1 ($R^1 = H$, $R^2 = Me$; Z/E = 40/60)

(a) To the solid mixture obtained from 1 ($\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$; 30 mmol) and TiCl₄ (30 mmol) under N₂ at -78 °C was added Et₂O (20 ml). The temperature was increased to -20 °C to aid dissolution and the dark-brown solution then recooled to -78 °C and treated with EtCHO (66 mmol). The solution was allowed to reach room temperature during $1\frac{1}{2}$ h. Total product: 4.6 g. Products: (i) 4-chloro-3methyl-2,6-diethyltetrahydropyran (78%): trans / cis = 28/72; identical with authentic samples, and (ii) (E)-EtCH=CMeCHO (20%), identified by GC.

(b) A solution of TiCl₄ (30 mmol) and 1 (R¹ = H, R² = Me; 30 mmol) in CH₂Cl₂ (20 ml) at -78° C under N₂ was kept at -78° C for 30 min and EtCHO (66 mmol) was then added. The mixture was allowed to warm to room temperature in $1\frac{1}{2}$ h, then kept at room temperature for 2 h before work-up. Total products 2.6 g. Products: (i) 4-chloro-3-methyl-2,6-diethyltetrahydropyran (51%): trans / cis = 88/12, (ii) EtCH(OH)CHMeCH=CH₂ (12%): mixture of threo- and erythro-isomers, and (iii) (E)-EtCH=CMeCHO (36%), all identical to authentic samples.

(c) To a solution of TiCl₄ (30 mmol) in Et₂O (20 ml) at -78° C under N₂ was added a mixture of 1 (R¹ = H, R² = Me; 30 mmol) and EtCHO (66 mmol). The mixture was allowed to warm to room temperature during $1\frac{1}{2}$ h then kept at room temperature until work-up. Product: 4-chloro-3-methyl-2,6-diethyltetrahydropyran (5.2 g, 80%): trans / cis = 27/73.

(d) Compound TiCl₄ (30 mmol) was added to 1 ($\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{M}e$; 30 mmol) and EtCHO (66 mmol) at -78° C without a solvent. An exothermic reaction ensued, with development of a bright-orange colour. The mixtures was allowed to warm to room temperature during $1\frac{1}{2}$ h and then kept at room temperature for 1 h before

work-up. Total product 3.7 g. Products: (i) 4-chloro-3-methyl-2,6-diethyltetrahydropyran (49%), trans/cis = 45/55, and (ii) EtCH(OH)CHMeCH=CH₂ (47%).

(e) To a mixture of Cp₂TiCl₂ (10 mmol) and EtCHO (10 mmol) in CH₂Cl₂ (20 ml) at -78° C was added 1 (R¹ = H, R² = Me; 10 mmol). The mixture was allowed to warm to room temperature during $1\frac{1}{2}$ h and left overnight at that room temperature. Total products 0.45 g. Products: (i) EtCH(OH)CHMeCH=CH₂ (58%), erythro / threo = 40/60, and (ii) (Z) = EtCH(OH)CH₂CH=CHMe (42%).

Reaction of EtCHO and 1 (R^1 , $R^2 = (CH_2)_3$)

(a) Compound 1 (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$; 10 mmol) was added to a solution of TiCl₄ (10 mmol) and EtCHO (10 mmol) in CH₂Cl₂ (20 ml) at -78° C. The solution was kept at -78° C for 20 min and then allowed to warm to room temperature during 3 h. Product: EtCH(OH)CHR¹CH=CHR² (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$; 0.7 g), erythro/threo = 5/95.

(b) As in (a) but with 20 mmol reagents, and 1 h from -78° C to room temperature. Product: EtCH(OH)CHR¹CH=CHR² (R¹, R² = (CH₂)₃; 1.0 g), erythro / threo = 2/98.

(c) Compound 1 (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$; 20 mmol) was added to TiCl₄ (20 mmol) and EtCHO (20 mmol) in CH₂Cl₂ (40 ml) at -78° C. The solution was kept (i) at -78° C for 30 min, then (ii) at -50° C for 30 min (colour yellow-brown), and finally (iii) at -30° C for 1 h (colour ochre). Product: EtCH(OH)CHR¹CH=CHR² (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$; 1.5 g), erythro / threo = 60/40.

(d) To a solution of TiCl₄ (30 mmol) in Et₂O (20 ml) at -78° C was added a mixture of 1 (R¹, R² = (CH₂)₃; 30 mmol) and EtCHO (66 mmol). The mixture was kept at -78° C for 30 min and then allowed to warm to room temperature during 3 h. Product: *trans*-9-chloro-2,4-diethyl-*cis*-3-oxabycyclo[3.3.1]nonane (1.8 g, 28%). B.p. 80°C/0.1 mmHg (Lit. value, 135°C/10 mmHg) [17].

(e) To a mixture of EtCHO (10 mmol) and Cp_2TiCl_2 (10 mmol) in Et₂O (20 ml) at $-78^{\circ}C$ was added 1 (R¹, R² = (CH₂)₃; 10 mmol). The mixture was kept at $-78^{\circ}C$ for 20 min and then allowed to warm to room temperature during $1\frac{1}{2}$ h. Total product: 0.5 g. Products: (i) EtCH(OH)CHR¹CH=CHR² (R¹, R² = (CH₂)₃ 28%), erythro / threo = 60/40, (ii) cyclohex-2-enol (50%), and (iii) cyclohex-2-enone, all identical with authentic samples.

(f) Repeated (e) using CH_2Cl_2 as solvent. Products: (i) $EtCH(OH)CHR^1$ -CH=CHR² (R¹, R² = (CH₂)₃; 39%), erythro / threo = 64/36, (ii) cyclohex-2-enol (46%), and (iii) cyclohex-2-enone (15%).

(g) An equimolar mixture of 1 (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$) and EtCHO (10 mmol) was added, with stirring to solid Bu₂SnCl₂. The mixture was stirred for 4 h. Product: EtCH(OH)CHR¹CH=CHR² (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$), 1.1 g (78%); erythro / threo = 65/35.

Reaction of 1 (R^1 , $R^2 = (CH_2)_3$) and MeCHO

An equimolar mixture of 1 (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$) and $\mathbb{Bu}_2 \mathrm{SnCl}_2$ (10 mmol) was stirred for 3 h before MeCHO (30 mmol) was added. The mixture was stirred for 6 h. Product: MeCH(OH)CHR¹CH=CHR² (\mathbb{R}^1 , $\mathbb{R}^2 = (CH_2)_3$), 1 g (79%), erythro/ threo = 60/40.

Acknowledgements

This work was supported by the C.N.R. (Roma) and the Ministero della Pubblica Istruzione (Roma). A NATO travel grant (to J.L.W./G.T.) is greatefully acknowledged. We thank also for partial support under the "Progetto Finalizzato per la Chimica Fine" CNR, Roma.

References

- 1 Y. Yamanoto, Accouns. Chem. Res., 20 (1987) 243. see also Aldrichimica Acta, 30 (1987) 45.
- 2 G. Tagliavini, Reviews Silicon, Germanium, Tin and Lead Cmpds., 8 (1985) 237.
- 3 C. Hull, C.V. Mortlock, and E.J. Thomas, Tetrahedron, 45 (1989) 1007.
- 4 J.-P. Quintard, G. Dumartin, B. Elissondo, A. Rahm and M. Pereyre, Tetrahedron, 45 (1989) 1017.
- 5 J.M. Coxon, S.J. van Eyk, and P.J. Steel, Tetrahedron, 45 (1989) 1029.
- 6 J.A. Marshall and M.Y. Gung, Tetrahedron, 45 (1989) 1043.
- 7 S.E. Denmark, E.J. Weber, T.M. Wilson, and T.M. Willson, Tetrahedron, 45 (1989) 1053.
- 8 S.E. Denmark, B.R. Henke, and E. Weber, J. Am. Chem. Soc., 109 (1987) 2512, and reference therein.
- 9 Y. Yamamoto, S. Hatsuya, and J.I. Yamada, J. Chem. Soc. Chem. Comm., (1987) 561.
- 10 A. Boaretto, D. Marton, G. Tagliavini, and P. Ganis, J. Organomet. Chem., 321 (1987) 199.
- 11 H.T. Reetz, M. Hüllmann, W. Massa, S. Berger, p. Rademacher, and P. Heymanns, J. Am. Chem. Soc., 108 (1986) 2405.
- 12 G.E. Keck and E.J. Enholm, J. Org. Chem., 50 (1985) 147.
- 13 A. Gambaro, A. Boaretto, D. Marton, and G. Tagliavini, J. Organomet. Chem., 288 (1983) 283.
- 14 A. Boaretto, D. Marton, G. Tagliavini, and A. Gambaro, Inorg. Chim. Acta, 77 (1983) L153.
- 15 A. Gambaro, A. Boaretto, D. Marton, and G. Tagliavini, J. Organomet. Chem., 260 (1984) 255.
- 16 A. Boaretto, D. Furlani, D. Marton, and G. Tagliavini, J. Organomet. Chem., 299 (1986) 157.
- 17 D. Marton, D. Furlani and G. Tagliavini, Gazz. Chim. It., 117 (1987) 189.
- 18 D. Marton, G. Tagliavini, M. Zordan, and J.L. Wardell, J. Organomet. Chem., 390 (1990) 127.
- 19 Y. Yamamoto, H. Yatagai, Y. Ishihara, and K. Maruyama, Tetrahedron, 40 (1984) 2239.
- 20 G.E. Keck, D.E. Abbott, E.P. Buden, and E.J. Enholm, Tetrahedron Lett., 25 (1984) 3927.
- 21 Y. Naruta, Y. Nishigaichi, and K. Maruyama, Tetrahedron, 45 (1989) 1067; see also J. Org. Chem., 33 (1988) 1192.
- 22 P. Harston, J.L. Wardell, D. Marton, G. Tagliavini, and P.J. Smith, Inorg. Chim. Acta, 162 (1989) 245.
- 23 S.E. Denmark, T.M. Wilson, and T.M. Willson, J. Am. Chem. Soc., 110 (1988) 984.
- 24 Y. Yamamoto, H. Yatagai, Y. Naruta, and K. Maruyama, J. Am. Chem. Soc., 102 (1980) 7107.
- 25 B. Weidmann and D. Seebach, Angew. Chem. Int. Ed. Engl., 22 (1983) 31.
- 26 F. Sato, K. Iida, S. Iijima, H. Moriya and M. Sato, J. Chem. Soc. Chem. Comm., (1981) 1140.
- 27 Y. Yamamoto and K. Maruyama, J. Organomet. Chem., 284 (1985) C45.
- 28 A. Gambaro, P. Ganis, D. Marton, V. Peruzzo and G. Tagliavini, J. Organomet. Chem., 231 (1982) 307.
- 29 D.R. Stapp, and J.C. Randall, J. Org. Chem., 35 (1970) 2948.